Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4}{\sqrt{44}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 4 }{\sqrt{ 44 }} \times \frac{ \color{orangered}{\sqrt{ 44 }} }{ \color{orangered}{\sqrt{ 44 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{44}}{44} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 4 \sqrt{ 4 \cdot 11 }}{ 44 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 4 \cdot 2 \sqrt{ 11 } }{ 44 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{8\sqrt{11}}{44} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 8 \sqrt{ 11 } : \color{blue}{ 4 } }{ 44 : \color{blue}{ 4 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2\sqrt{11}}{11}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 44 }}$. |
| ② | In denominator we have $ \sqrt{ 44 } \cdot \sqrt{ 44 } = 44 $. |
| ③ | Simplify $ \sqrt{ 44 } $. |
| ④ | Divide both the top and bottom numbers by $ \color{blue}{ 4 }$. |