Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4}{\sqrt{42}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 4 }{\sqrt{ 42 }} \times \frac{ \color{orangered}{\sqrt{ 42 }} }{ \color{orangered}{\sqrt{ 42 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{42}}{42} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 4 \sqrt{ 42 } : \color{blue}{ 2 } }{ 42 : \color{blue}{ 2 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2\sqrt{42}}{21}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 42 }}$. |
| ② | In denominator we have $ \sqrt{ 42 } \cdot \sqrt{ 42 } = 42 $. |
| ③ | Divide both the top and bottom numbers by $ \color{blue}{ 2 }$. |