Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4}{-3+\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4}{-3+\sqrt{6}}\frac{-3-\sqrt{6}}{-3-\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-12-4\sqrt{6}}{9+3\sqrt{6}-3\sqrt{6}-6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-12-4\sqrt{6}}{3}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ -3- \sqrt{6}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 4 } \cdot \left( -3- \sqrt{6}\right) = \color{blue}{4} \cdot-3+\color{blue}{4} \cdot- \sqrt{6} = \\ = -12- 4 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \left( -3 + \sqrt{6}\right) } \cdot \left( -3- \sqrt{6}\right) = \color{blue}{-3} \cdot-3\color{blue}{-3} \cdot- \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot-3+\color{blue}{ \sqrt{6}} \cdot- \sqrt{6} = \\ = 9 + 3 \sqrt{6}- 3 \sqrt{6}-6 $$ |
| ③ | Simplify numerator and denominator |