Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3\sqrt{7}}{\sqrt{88}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{7}}{\sqrt{88}}\frac{\sqrt{88}}{\sqrt{88}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6\sqrt{154}}{88} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 6 \sqrt{ 154 } : \color{blue}{ 2 } } { 88 : \color{blue}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{154}}{44}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{88}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{7} } \cdot \sqrt{88} = 6 \sqrt{154} $$ Simplify denominator. $$ \color{blue}{ \sqrt{88} } \cdot \sqrt{88} = 88 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 2 } $. |