Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3\sqrt{7}}{\sqrt{42}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{7}}{\sqrt{42}}\frac{\sqrt{42}}{\sqrt{42}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{21\sqrt{6}}{42} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{6}}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{42}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{7} } \cdot \sqrt{42} = 21 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \sqrt{42} } \cdot \sqrt{42} = 42 $$ |
| ③ | Divide both numerator and denominator by 21. |