Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3\sqrt{6}\sqrt{7}\sqrt{8}}{\sqrt{4}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{6}\sqrt{7}\sqrt{8}}{\sqrt{4}}\frac{\sqrt{4}}{\sqrt{4}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{24\sqrt{21}}{4} \xlongequal{ } \\[1 em] & \xlongequal{ }6\sqrt{21}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{4}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{336} } \cdot \sqrt{4} = 24 \sqrt{21} $$ Simplify denominator. $$ \color{blue}{ \sqrt{4} } \cdot \sqrt{4} = 4 $$ |