Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3\sqrt{3}}{-\sqrt{48}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{3}}{-\sqrt{48}}\frac{\sqrt{48}}{\sqrt{48}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{36}{-48} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{36}{48} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}- \, \frac{ 36 : \color{orangered}{ 12 } }{ 48 : \color{orangered}{ 12 }} \xlongequal{ } \\[1 em] & \xlongequal{ }-\frac{3}{4}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{48}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{3} } \cdot \sqrt{48} = 36 $$ Simplify denominator. $$ \color{blue}{ - \sqrt{48} } \cdot \sqrt{48} = -48 $$ |
| ③ | Place minus sign in front of the fraction. |
| ④ | Divide both the top and bottom numbers by $ \color{orangered}{ 12 } $. |