Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3\sqrt{2}+\sqrt{6}}{6\sqrt{2}-\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{2}+\sqrt{6}}{6\sqrt{2}-\sqrt{6}}\frac{6\sqrt{2}+\sqrt{6}}{6\sqrt{2}+\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{36+6\sqrt{3}+12\sqrt{3}+6}{72+12\sqrt{3}-12\sqrt{3}-6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{42+18\sqrt{3}}{66} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{7+3\sqrt{3}}{11}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 6 \sqrt{2} + \sqrt{6}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 3 \sqrt{2} + \sqrt{6}\right) } \cdot \left( 6 \sqrt{2} + \sqrt{6}\right) = \color{blue}{ 3 \sqrt{2}} \cdot 6 \sqrt{2}+\color{blue}{ 3 \sqrt{2}} \cdot \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot 6 \sqrt{2}+\color{blue}{ \sqrt{6}} \cdot \sqrt{6} = \\ = 36 + 6 \sqrt{3} + 12 \sqrt{3} + 6 $$ Simplify denominator. $$ \color{blue}{ \left( 6 \sqrt{2}- \sqrt{6}\right) } \cdot \left( 6 \sqrt{2} + \sqrt{6}\right) = \color{blue}{ 6 \sqrt{2}} \cdot 6 \sqrt{2}+\color{blue}{ 6 \sqrt{2}} \cdot \sqrt{6}\color{blue}{- \sqrt{6}} \cdot 6 \sqrt{2}\color{blue}{- \sqrt{6}} \cdot \sqrt{6} = \\ = 72 + 12 \sqrt{3}- 12 \sqrt{3}-6 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 6. |