Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3\sqrt{26}}{\sqrt{468}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{26}}{\sqrt{468}}\frac{\sqrt{468}}{\sqrt{468}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{234\sqrt{2}}{468} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{2}}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{468}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{26} } \cdot \sqrt{468} = 234 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \sqrt{468} } \cdot \sqrt{468} = 468 $$ |
| ③ | Divide both numerator and denominator by 234. |