Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3\sqrt{15}}{6\sqrt{80}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{15}}{6\sqrt{80}}\frac{\sqrt{80}}{\sqrt{80}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{60\sqrt{3}}{480} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{3}}{8}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{80}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{15} } \cdot \sqrt{80} = 60 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ 6 \sqrt{80} } \cdot \sqrt{80} = 480 $$ |
| ③ | Divide both numerator and denominator by 60. |