Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3\sqrt{12}}{6\sqrt{27}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{12}}{6\sqrt{27}}\frac{\sqrt{27}}{\sqrt{27}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{54}{162} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 54 : \color{orangered}{ 54 } }{ 162 : \color{orangered}{ 54 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{3}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{27}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{12} } \cdot \sqrt{27} = 54 $$ Simplify denominator. $$ \color{blue}{ 6 \sqrt{27} } \cdot \sqrt{27} = 162 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 54 } $. |