Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3\sqrt{1}^8}{\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\cdot1}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 3 }{\sqrt{ 2 }} \times \frac{ \color{orangered}{\sqrt{ 2 }} }{ \color{orangered}{\sqrt{ 2 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{3\sqrt{2}}{2}\end{aligned} $$ | |
| ① | $ 1 ^ 8 = 1 $ |
| ② | $ 3 \cdot 1 = 3 $ |
| ③ | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 2 }}$. |
| ④ | In denominator we have $ \sqrt{ 2 } \cdot \sqrt{ 2 } = 2 $. |