Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3+\sqrt{6}}{5+\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3+\sqrt{6}}{5+\sqrt{2}}\frac{5-\sqrt{2}}{5-\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{15-3\sqrt{2}+5\sqrt{6}-2\sqrt{3}}{25-5\sqrt{2}+5\sqrt{2}-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{15-3\sqrt{2}+5\sqrt{6}-2\sqrt{3}}{23}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 5- \sqrt{2}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 3 + \sqrt{6}\right) } \cdot \left( 5- \sqrt{2}\right) = \color{blue}{3} \cdot5+\color{blue}{3} \cdot- \sqrt{2}+\color{blue}{ \sqrt{6}} \cdot5+\color{blue}{ \sqrt{6}} \cdot- \sqrt{2} = \\ = 15- 3 \sqrt{2} + 5 \sqrt{6}- 2 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \left( 5 + \sqrt{2}\right) } \cdot \left( 5- \sqrt{2}\right) = \color{blue}{5} \cdot5+\color{blue}{5} \cdot- \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot5+\color{blue}{ \sqrt{2}} \cdot- \sqrt{2} = \\ = 25- 5 \sqrt{2} + 5 \sqrt{2}-2 $$ |
| ③ | Simplify numerator and denominator |