Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3+\sqrt{3}}{\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3+\sqrt{3}}{\sqrt{7}}\frac{\sqrt{7}}{\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3\sqrt{7}+\sqrt{21}}{7}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 3 + \sqrt{3}\right) } \cdot \sqrt{7} = \color{blue}{3} \cdot \sqrt{7}+\color{blue}{ \sqrt{3}} \cdot \sqrt{7} = \\ = 3 \sqrt{7} + \sqrt{21} $$ Simplify denominator. $$ \color{blue}{ \sqrt{7} } \cdot \sqrt{7} = 7 $$ |