Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{36}{15\sqrt{12}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{36}{15\sqrt{12}}\frac{\sqrt{12}}{\sqrt{12}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{72\sqrt{3}}{180} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 72 \sqrt{ 3 } : \color{blue}{ 36 } } { 180 : \color{blue}{ 36 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2\sqrt{3}}{5}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{12}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 36 } \cdot \sqrt{12} = 72 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ 15 \sqrt{12} } \cdot \sqrt{12} = 180 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 36 } $. |