Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{32\sqrt{4}}{8\sqrt{20}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{32\sqrt{4}}{8\sqrt{20}}\frac{\sqrt{20}}{\sqrt{20}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{128\sqrt{5}}{160} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 128 \sqrt{ 5 } : \color{blue}{ 32 } } { 160 : \color{blue}{ 32 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4\sqrt{5}}{5}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{20}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 32 \sqrt{4} } \cdot \sqrt{20} = 128 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ 8 \sqrt{20} } \cdot \sqrt{20} = 160 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 32 } $. |