Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{30}{\sqrt{72}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 30 }{\sqrt{ 72 }} \times \frac{ \color{orangered}{\sqrt{ 72 }} }{ \color{orangered}{\sqrt{ 72 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{30\sqrt{72}}{72} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 30 \sqrt{ 36 \cdot 2 }}{ 72 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 30 \cdot 6 \sqrt{ 2 } }{ 72 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{180\sqrt{2}}{72} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 180 \sqrt{ 2 } : \color{blue}{ 36 } }{ 72 : \color{blue}{ 36 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{5\sqrt{2}}{2}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 72 }}$. |
| ② | In denominator we have $ \sqrt{ 72 } \cdot \sqrt{ 72 } = 72 $. |
| ③ | Simplify $ \sqrt{ 72 } $. |
| ④ | Divide both the top and bottom numbers by $ \color{blue}{ 36 }$. |