Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3}{\sqrt{30}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 3 }{\sqrt{ 30 }} \times \frac{ \color{orangered}{\sqrt{ 30 }} }{ \color{orangered}{\sqrt{ 30 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3\sqrt{30}}{30} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 3 \sqrt{ 30 } : \color{blue}{ 3 } }{ 30 : \color{blue}{ 3 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{\sqrt{30}}{10}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 30 }}$. |
| ② | In denominator we have $ \sqrt{ 30 } \cdot \sqrt{ 30 } = 30 $. |
| ③ | Divide both the top and bottom numbers by $ \color{blue}{ 3 }$. |