Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3}{2\sqrt{16}^3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3}{2\cdot16\sqrt{16}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3}{2\cdot16\cdot4} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3}{2\cdot64} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3}{128}\end{aligned} $$ | |
| ① | $$ \sqrt{16}^3 =
\sqrt{16} ^2 \cdot \sqrt{16} =
\lvert 16 \rvert \cdot \sqrt{16} =
16\sqrt{16} $$ |
| ② | The square root of $ 16 $ is $ 4 $. |
| ③ | $ 2 \cdot 64 = 128 $ |