Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3}{-2\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3}{-2\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3\sqrt{2}}{-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{3\sqrt{2}}{4}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 3 } \cdot \sqrt{2} = 3 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ - 2 \sqrt{2} } \cdot \sqrt{2} = -4 $$ |
| ③ | Place a negative sign in front of a fraction. |