Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2\sqrt{8}}{\sqrt{36}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{8}}{\sqrt{36}}\frac{\sqrt{36}}{\sqrt{36}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{24\sqrt{2}}{36} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 24 \sqrt{ 2 } : \color{blue}{ 12 } } { 36 : \color{blue}{ 12 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2\sqrt{2}}{3}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{36}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 \sqrt{8} } \cdot \sqrt{36} = 24 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \sqrt{36} } \cdot \sqrt{36} = 36 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 12 } $. |