Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2\sqrt{6}}{3\sqrt{5}+4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{6}}{3\sqrt{5}+4}\frac{3\sqrt{5}-4}{3\sqrt{5}-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6\sqrt{30}-8\sqrt{6}}{45-12\sqrt{5}+12\sqrt{5}-16} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6\sqrt{30}-8\sqrt{6}}{29}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 3 \sqrt{5}-4} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 \sqrt{6} } \cdot \left( 3 \sqrt{5}-4\right) = \color{blue}{ 2 \sqrt{6}} \cdot 3 \sqrt{5}+\color{blue}{ 2 \sqrt{6}} \cdot-4 = \\ = 6 \sqrt{30}- 8 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \left( 3 \sqrt{5} + 4\right) } \cdot \left( 3 \sqrt{5}-4\right) = \color{blue}{ 3 \sqrt{5}} \cdot 3 \sqrt{5}+\color{blue}{ 3 \sqrt{5}} \cdot-4+\color{blue}{4} \cdot 3 \sqrt{5}+\color{blue}{4} \cdot-4 = \\ = 45- 12 \sqrt{5} + 12 \sqrt{5}-16 $$ |
| ③ | Simplify numerator and denominator |