Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2\sqrt{42}}{4\sqrt{42}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{42}}{4\sqrt{42}}\frac{\sqrt{42}}{\sqrt{42}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{84}{168} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 84 : \color{orangered}{ 84 } }{ 168 : \color{orangered}{ 84 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{42}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 \sqrt{42} } \cdot \sqrt{42} = 84 $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{42} } \cdot \sqrt{42} = 168 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 84 } $. |