Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2\sqrt{3}+8}{3\sqrt{3}-1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{3}+8}{3\sqrt{3}-1}\frac{3\sqrt{3}+1}{3\sqrt{3}+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{18+2\sqrt{3}+24\sqrt{3}+8}{27+3\sqrt{3}-3\sqrt{3}-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{26+26\sqrt{3}}{26} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{1+\sqrt{3}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}1+\sqrt{3}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 3 \sqrt{3} + 1} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 2 \sqrt{3} + 8\right) } \cdot \left( 3 \sqrt{3} + 1\right) = \color{blue}{ 2 \sqrt{3}} \cdot 3 \sqrt{3}+\color{blue}{ 2 \sqrt{3}} \cdot1+\color{blue}{8} \cdot 3 \sqrt{3}+\color{blue}{8} \cdot1 = \\ = 18 + 2 \sqrt{3} + 24 \sqrt{3} + 8 $$ Simplify denominator. $$ \color{blue}{ \left( 3 \sqrt{3}-1\right) } \cdot \left( 3 \sqrt{3} + 1\right) = \color{blue}{ 3 \sqrt{3}} \cdot 3 \sqrt{3}+\color{blue}{ 3 \sqrt{3}} \cdot1\color{blue}{-1} \cdot 3 \sqrt{3}\color{blue}{-1} \cdot1 = \\ = 27 + 3 \sqrt{3}- 3 \sqrt{3}-1 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 26. |
| ⑤ | Remove 1 from denominator. |