Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2\sqrt{3}}{2\sqrt{6}+3\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{3}}{2\sqrt{6}+3\sqrt{2}}\frac{2\sqrt{6}-3\sqrt{2}}{2\sqrt{6}-3\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{2}-6\sqrt{6}}{24-12\sqrt{3}+12\sqrt{3}-18} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{12\sqrt{2}-6\sqrt{6}}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{2\sqrt{2}-\sqrt{6}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}2\sqrt{2}-\sqrt{6}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 2 \sqrt{6}- 3 \sqrt{2}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 \sqrt{3} } \cdot \left( 2 \sqrt{6}- 3 \sqrt{2}\right) = \color{blue}{ 2 \sqrt{3}} \cdot 2 \sqrt{6}+\color{blue}{ 2 \sqrt{3}} \cdot- 3 \sqrt{2} = \\ = 12 \sqrt{2}- 6 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \left( 2 \sqrt{6} + 3 \sqrt{2}\right) } \cdot \left( 2 \sqrt{6}- 3 \sqrt{2}\right) = \color{blue}{ 2 \sqrt{6}} \cdot 2 \sqrt{6}+\color{blue}{ 2 \sqrt{6}} \cdot- 3 \sqrt{2}+\color{blue}{ 3 \sqrt{2}} \cdot 2 \sqrt{6}+\color{blue}{ 3 \sqrt{2}} \cdot- 3 \sqrt{2} = \\ = 24- 12 \sqrt{3} + 12 \sqrt{3}-18 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 6. |
| ⑤ | Remove 1 from denominator. |