Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2\sqrt{2}}{4-\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{2}}{4-\sqrt{6}}\frac{4+\sqrt{6}}{4+\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8\sqrt{2}+4\sqrt{3}}{16+4\sqrt{6}-4\sqrt{6}-6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{8\sqrt{2}+4\sqrt{3}}{10}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 4 + \sqrt{6}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 \sqrt{2} } \cdot \left( 4 + \sqrt{6}\right) = \color{blue}{ 2 \sqrt{2}} \cdot4+\color{blue}{ 2 \sqrt{2}} \cdot \sqrt{6} = \\ = 8 \sqrt{2} + 4 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \left( 4- \sqrt{6}\right) } \cdot \left( 4 + \sqrt{6}\right) = \color{blue}{4} \cdot4+\color{blue}{4} \cdot \sqrt{6}\color{blue}{- \sqrt{6}} \cdot4\color{blue}{- \sqrt{6}} \cdot \sqrt{6} = \\ = 16 + 4 \sqrt{6}- 4 \sqrt{6}-6 $$ |
| ③ | Simplify numerator and denominator |