Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2\sqrt{2}}{3\sqrt{11}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{2}}{3\sqrt{11}}\frac{\sqrt{11}}{\sqrt{11}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{22}}{33}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{11}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 \sqrt{2} } \cdot \sqrt{11} = 2 \sqrt{22} $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{11} } \cdot \sqrt{11} = 33 $$ |