Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2+\sqrt{3}}{7+\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2+\sqrt{3}}{7+\sqrt{3}}\frac{7-\sqrt{3}}{7-\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14-2\sqrt{3}+7\sqrt{3}-3}{49-7\sqrt{3}+7\sqrt{3}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{11+5\sqrt{3}}{46}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 7- \sqrt{3}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 2 + \sqrt{3}\right) } \cdot \left( 7- \sqrt{3}\right) = \color{blue}{2} \cdot7+\color{blue}{2} \cdot- \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot7+\color{blue}{ \sqrt{3}} \cdot- \sqrt{3} = \\ = 14- 2 \sqrt{3} + 7 \sqrt{3}-3 $$ Simplify denominator. $$ \color{blue}{ \left( 7 + \sqrt{3}\right) } \cdot \left( 7- \sqrt{3}\right) = \color{blue}{7} \cdot7+\color{blue}{7} \cdot- \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot7+\color{blue}{ \sqrt{3}} \cdot- \sqrt{3} = \\ = 49- 7 \sqrt{3} + 7 \sqrt{3}-3 $$ |
| ③ | Simplify numerator and denominator |