Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{25\sqrt{84}}{5\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{25\sqrt{84}}{5\sqrt{6}}\frac{\sqrt{6}}{\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{150\sqrt{14}}{30} \xlongequal{ } \\[1 em] & \xlongequal{ }5\sqrt{14}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 25 \sqrt{84} } \cdot \sqrt{6} = 150 \sqrt{14} $$ Simplify denominator. $$ \color{blue}{ 5 \sqrt{6} } \cdot \sqrt{6} = 30 $$ |