Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{218}{7\sqrt{218}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{218}{7\sqrt{218}}\frac{\sqrt{218}}{\sqrt{218}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{218\sqrt{218}}{1526} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{218}}{7}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{218}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 218 } \cdot \sqrt{218} = 218 \sqrt{218} $$ Simplify denominator. $$ \color{blue}{ 7 \sqrt{218} } \cdot \sqrt{218} = 1526 $$ |
| ③ | Divide both numerator and denominator by 218. |