Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{20\sqrt{8}}{4\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{20\sqrt{8}}{4\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{40\sqrt{6}}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 40 \sqrt{ 6 } : \color{blue}{ 4 } } { 12 : \color{blue}{ 4 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{10\sqrt{6}}{3}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 20 \sqrt{8} } \cdot \sqrt{3} = 40 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{3} } \cdot \sqrt{3} = 12 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 4 } $. |