Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2-\sqrt{6}}{13+\sqrt{11}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2-\sqrt{6}}{13+\sqrt{11}}\frac{13-\sqrt{11}}{13-\sqrt{11}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{26-2\sqrt{11}-13\sqrt{6}+\sqrt{66}}{169-13\sqrt{11}+13\sqrt{11}-11} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{26-2\sqrt{11}-13\sqrt{6}+\sqrt{66}}{158}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 13- \sqrt{11}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 2- \sqrt{6}\right) } \cdot \left( 13- \sqrt{11}\right) = \color{blue}{2} \cdot13+\color{blue}{2} \cdot- \sqrt{11}\color{blue}{- \sqrt{6}} \cdot13\color{blue}{- \sqrt{6}} \cdot- \sqrt{11} = \\ = 26- 2 \sqrt{11}- 13 \sqrt{6} + \sqrt{66} $$ Simplify denominator. $$ \color{blue}{ \left( 13 + \sqrt{11}\right) } \cdot \left( 13- \sqrt{11}\right) = \color{blue}{13} \cdot13+\color{blue}{13} \cdot- \sqrt{11}+\color{blue}{ \sqrt{11}} \cdot13+\color{blue}{ \sqrt{11}} \cdot- \sqrt{11} = \\ = 169- 13 \sqrt{11} + 13 \sqrt{11}-11 $$ |
| ③ | Simplify numerator and denominator |