Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2-\sqrt{3}}{3\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2-\sqrt{3}}{3\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{3}-3}{9}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 2- \sqrt{3}\right) } \cdot \sqrt{3} = \color{blue}{2} \cdot \sqrt{3}\color{blue}{- \sqrt{3}} \cdot \sqrt{3} = \\ = 2 \sqrt{3}-3 $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{3} } \cdot \sqrt{3} = 9 $$ |