Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2-5\sqrt{5}}{4\sqrt{13}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2-5\sqrt{5}}{4\sqrt{13}}\frac{\sqrt{13}}{\sqrt{13}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{13}-5\sqrt{65}}{52}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{13}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 2- 5 \sqrt{5}\right) } \cdot \sqrt{13} = \color{blue}{2} \cdot \sqrt{13}\color{blue}{- 5 \sqrt{5}} \cdot \sqrt{13} = \\ = 2 \sqrt{13}- 5 \sqrt{65} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{13} } \cdot \sqrt{13} = 52 $$ |