Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{\sqrt{8}-\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{\sqrt{8}-\sqrt{2}}\frac{\sqrt{8}+\sqrt{2}}{\sqrt{8}+\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{2}+2\sqrt{2}}{8+4-4-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6\sqrt{2}}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\sqrt{2}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }\sqrt{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{8} + \sqrt{2}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( \sqrt{8} + \sqrt{2}\right) = \color{blue}{2} \cdot \sqrt{8}+\color{blue}{2} \cdot \sqrt{2} = \\ = 4 \sqrt{2} + 2 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{8}- \sqrt{2}\right) } \cdot \left( \sqrt{8} + \sqrt{2}\right) = \color{blue}{ \sqrt{8}} \cdot \sqrt{8}+\color{blue}{ \sqrt{8}} \cdot \sqrt{2}\color{blue}{- \sqrt{2}} \cdot \sqrt{8}\color{blue}{- \sqrt{2}} \cdot \sqrt{2} = \\ = 8 + 4-4-2 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 6. |