Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{\sqrt{300}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 2 }{\sqrt{ 300 }} \times \frac{ \color{orangered}{\sqrt{ 300 }} }{ \color{orangered}{\sqrt{ 300 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{300}}{300} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 2 \sqrt{ 100 \cdot 3 }}{ 300 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 2 \cdot 10 \sqrt{ 3 } }{ 300 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{20\sqrt{3}}{300} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 20 \sqrt{ 3 } : \color{blue}{ 20 } }{ 300 : \color{blue}{ 20 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{\sqrt{3}}{15}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 300 }}$. |
| ② | In denominator we have $ \sqrt{ 300 } \cdot \sqrt{ 300 } = 300 $. |
| ③ | Simplify $ \sqrt{ 300 } $. |
| ④ | Divide both the top and bottom numbers by $ \color{blue}{ 20 }$. |