Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{\sqrt{3}-\sqrt{4}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{\sqrt{3}-\sqrt{4}}\frac{\sqrt{3}+\sqrt{4}}{\sqrt{3}+\sqrt{4}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{3}+4}{3+2\sqrt{3}-2\sqrt{3}-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2\sqrt{3}+4}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{2\sqrt{3}+4}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }-(2\sqrt{3}+4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-2\sqrt{3}-4\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3} + \sqrt{4}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( \sqrt{3} + \sqrt{4}\right) = \color{blue}{2} \cdot \sqrt{3}+\color{blue}{2} \cdot \sqrt{4} = \\ = 2 \sqrt{3} + 4 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{3}- \sqrt{4}\right) } \cdot \left( \sqrt{3} + \sqrt{4}\right) = \color{blue}{ \sqrt{3}} \cdot \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot \sqrt{4}\color{blue}{- \sqrt{4}} \cdot \sqrt{3}\color{blue}{- \sqrt{4}} \cdot \sqrt{4} = \\ = 3 + 2 \sqrt{3}- 2 \sqrt{3}-4 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Place a negative sign in front of a fraction. |
| ⑤ | Remove the parenthesis by changing the sign of each term within them. |