Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{\sqrt{2}-\sqrt{4}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{\sqrt{2}-\sqrt{4}}\frac{\sqrt{2}+\sqrt{4}}{\sqrt{2}+\sqrt{4}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{2}+4}{2+2\sqrt{2}-2\sqrt{2}-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2\sqrt{2}+4}{-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\sqrt{2}+2}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-\frac{\sqrt{2}+2}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }-(\sqrt{2}+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}-\sqrt{2}-2\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2} + \sqrt{4}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( \sqrt{2} + \sqrt{4}\right) = \color{blue}{2} \cdot \sqrt{2}+\color{blue}{2} \cdot \sqrt{4} = \\ = 2 \sqrt{2} + 4 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{2}- \sqrt{4}\right) } \cdot \left( \sqrt{2} + \sqrt{4}\right) = \color{blue}{ \sqrt{2}} \cdot \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot \sqrt{4}\color{blue}{- \sqrt{4}} \cdot \sqrt{2}\color{blue}{- \sqrt{4}} \cdot \sqrt{4} = \\ = 2 + 2 \sqrt{2}- 2 \sqrt{2}-4 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 2. |
| ⑤ | Place a negative sign in front of a fraction. |
| ⑥ | Remove the parenthesis by changing the sign of each term within them. |