Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{6-\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{6-\sqrt{5}}\frac{6+\sqrt{5}}{6+\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12+2\sqrt{5}}{36+6\sqrt{5}-6\sqrt{5}-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{12+2\sqrt{5}}{31}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 6 + \sqrt{5}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( 6 + \sqrt{5}\right) = \color{blue}{2} \cdot6+\color{blue}{2} \cdot \sqrt{5} = \\ = 12 + 2 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( 6- \sqrt{5}\right) } \cdot \left( 6 + \sqrt{5}\right) = \color{blue}{6} \cdot6+\color{blue}{6} \cdot \sqrt{5}\color{blue}{- \sqrt{5}} \cdot6\color{blue}{- \sqrt{5}} \cdot \sqrt{5} = \\ = 36 + 6 \sqrt{5}- 6 \sqrt{5}-5 $$ |
| ③ | Simplify numerator and denominator |