Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{4\sqrt{45}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{4\sqrt{45}}\frac{\sqrt{45}}{\sqrt{45}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6\sqrt{5}}{180} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{5}}{30}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{45}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \sqrt{45} = 6 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{45} } \cdot \sqrt{45} = 180 $$ |
| ③ | Divide both numerator and denominator by 6. |