Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{4\sqrt{3}-2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{4\sqrt{3}-2}\frac{4\sqrt{3}+2}{4\sqrt{3}+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8\sqrt{3}+4}{48+8\sqrt{3}-8\sqrt{3}-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{8\sqrt{3}+4}{44} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{2\sqrt{3}+1}{11}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 4 \sqrt{3} + 2} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( 4 \sqrt{3} + 2\right) = \color{blue}{2} \cdot 4 \sqrt{3}+\color{blue}{2} \cdot2 = \\ = 8 \sqrt{3} + 4 $$ Simplify denominator. $$ \color{blue}{ \left( 4 \sqrt{3}-2\right) } \cdot \left( 4 \sqrt{3} + 2\right) = \color{blue}{ 4 \sqrt{3}} \cdot 4 \sqrt{3}+\color{blue}{ 4 \sqrt{3}} \cdot2\color{blue}{-2} \cdot 4 \sqrt{3}\color{blue}{-2} \cdot2 = \\ = 48 + 8 \sqrt{3}- 8 \sqrt{3}-4 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 4. |