Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{3-\sqrt{10}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{3-\sqrt{10}}\frac{3+\sqrt{10}}{3+\sqrt{10}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6+2\sqrt{10}}{9+3\sqrt{10}-3\sqrt{10}-10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6+2\sqrt{10}}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{6+2\sqrt{10}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }-(6+2\sqrt{10}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-6-2\sqrt{10}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 3 + \sqrt{10}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( 3 + \sqrt{10}\right) = \color{blue}{2} \cdot3+\color{blue}{2} \cdot \sqrt{10} = \\ = 6 + 2 \sqrt{10} $$ Simplify denominator. $$ \color{blue}{ \left( 3- \sqrt{10}\right) } \cdot \left( 3 + \sqrt{10}\right) = \color{blue}{3} \cdot3+\color{blue}{3} \cdot \sqrt{10}\color{blue}{- \sqrt{10}} \cdot3\color{blue}{- \sqrt{10}} \cdot \sqrt{10} = \\ = 9 + 3 \sqrt{10}- 3 \sqrt{10}-10 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Place a negative sign in front of a fraction. |
| ⑤ | Remove the parenthesis by changing the sign of each term within them. |