Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{-10+\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{-10+\sqrt{5}}\frac{-10-\sqrt{5}}{-10-\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-20-2\sqrt{5}}{100+10\sqrt{5}-10\sqrt{5}-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-20-2\sqrt{5}}{95}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ -10- \sqrt{5}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( -10- \sqrt{5}\right) = \color{blue}{2} \cdot-10+\color{blue}{2} \cdot- \sqrt{5} = \\ = -20- 2 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( -10 + \sqrt{5}\right) } \cdot \left( -10- \sqrt{5}\right) = \color{blue}{-10} \cdot-10\color{blue}{-10} \cdot- \sqrt{5}+\color{blue}{ \sqrt{5}} \cdot-10+\color{blue}{ \sqrt{5}} \cdot- \sqrt{5} = \\ = 100 + 10 \sqrt{5}- 10 \sqrt{5}-5 $$ |
| ③ | Simplify numerator and denominator |