Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1+\sqrt{5}}{\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1+\sqrt{5}}{\sqrt{6}}\frac{\sqrt{6}}{\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\sqrt{6}+\sqrt{30}}{6}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 1 + \sqrt{5}\right) } \cdot \sqrt{6} = \color{blue}{1} \cdot \sqrt{6}+\color{blue}{ \sqrt{5}} \cdot \sqrt{6} = \\ = \sqrt{6} + \sqrt{30} $$ Simplify denominator. $$ \color{blue}{ \sqrt{6} } \cdot \sqrt{6} = 6 $$ |