Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{19}{3\sqrt{195}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{19}{3\sqrt{195}}\frac{\sqrt{195}}{\sqrt{195}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{19\sqrt{195}}{585}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{195}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 19 } \cdot \sqrt{195} = 19 \sqrt{195} $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{195} } \cdot \sqrt{195} = 585 $$ |