Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{15\sqrt{2}}{2\sqrt{18}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{15\sqrt{2}}{2\sqrt{18}}\frac{\sqrt{18}}{\sqrt{18}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{90}{36} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 90 : \color{orangered}{ 18 } }{ 36 : \color{orangered}{ 18 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{5}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{18}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 15 \sqrt{2} } \cdot \sqrt{18} = 90 $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{18} } \cdot \sqrt{18} = 36 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 18 } $. |