Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{15}{2\sqrt{50}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{15}{2\sqrt{50}}\frac{\sqrt{50}}{\sqrt{50}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{75\sqrt{2}}{100} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 75 \sqrt{ 2 } : \color{blue}{ 25 } } { 100 : \color{blue}{ 25 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{2}}{4}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{50}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 15 } \cdot \sqrt{50} = 75 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{50} } \cdot \sqrt{50} = 100 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 25 } $. |