Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{14}{5\sqrt{9}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{14}{5\sqrt{9}}\frac{\sqrt{9}}{\sqrt{9}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{42}{45} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 42 : \color{orangered}{ 3 } }{ 45 : \color{orangered}{ 3 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{14}{15}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{9}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 14 } \cdot \sqrt{9} = 42 $$ Simplify denominator. $$ \color{blue}{ 5 \sqrt{9} } \cdot \sqrt{9} = 45 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 3 } $. |