Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{14}{3\sqrt{49}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{14}{3\sqrt{49}}\frac{\sqrt{49}}{\sqrt{49}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{98}{147} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 98 : \color{orangered}{ 49 } }{ 147 : \color{orangered}{ 49 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2}{3}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{49}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 14 } \cdot \sqrt{49} = 98 $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{49} } \cdot \sqrt{49} = 147 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 49 } $. |