Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{13}{-\sqrt{120}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{13}{-\sqrt{120}}\frac{\sqrt{120}}{\sqrt{120}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{26\sqrt{30}}{-120} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{26\sqrt{30}}{120} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{ 26 \sqrt{ 30 } : \color{blue}{ 2 } } { 120 : \color{blue}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }-\frac{13\sqrt{30}}{60}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{120}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 13 } \cdot \sqrt{120} = 26 \sqrt{30} $$ Simplify denominator. $$ \color{blue}{ - \sqrt{120} } \cdot \sqrt{120} = -120 $$ |
| ③ | Place a negative sign in front of a fraction. |
| ④ | Divide numerator and denominator by $ \color{blue}{ 2 } $. |